Partial Identifiability for Nonnegative Matrix Factorization

نویسندگان

چکیده

Given a nonnegative matrix factorization, , and factorization rank, exact (exact NMF) decomposes as the product of two matrices, with columns, such . A central research topic in literature is conditions under which decomposition unique/identifiable up to trivial ambiguities. In this paper, we focus on partial identifiability, that is, uniqueness subset columns We start our investigations data‐based (DBU) theorem from chemometrics literature. The DBU analyzes all feasible solutions NMF relies sparsity provide mathematically rigorous recently published restricted version theorem, relying only simple algebraic conditions: it applies particular solution (as opposed solutions) allows us guarantee single column or Second, based geometric interpretation obtain new identifiability result. This also leads another result case Third, show how results can be used sequentially more illustrate these several examples, including one

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized nonnegative matrix factorization

Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...

متن کامل

Quadratic nonnegative matrix factorization

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), wh...

متن کامل

Randomized nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a mo...

متن کامل

Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications

Nonnegative matrix factorization (NMF) aims at factoring a data matrix into low-rank latent factor matrices with nonnegativity constraints on (one or both of) the factors. Specifically, given a data matrix X ∈ RM×N and a target rank R, NMF seeks a factorization model X ≈WH>, W ∈ RM×R, H ∈ RN×R, to ‘explain’ the data matrix X, where W ≥ 0 and/or H ≥ 0 and R ≤ min{M,N}. At first glance, NMF is no...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2023

ISSN: ['1095-7162', '0895-4798']

DOI: https://doi.org/10.1137/22m1507553